Generalized extreme value distribution (quantile/mean of N-block maxima parametrization)
Source:R/univdist.R
      gevN.RdLikelihood, score function and information matrix, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution parametrized in terms of the quantiles/mean of N-block maxima parametrization \(z\), scale and shape.
Usage
gevN.ll(par, dat, N, q, qty = c('mean', 'quantile'))
gevN.ll.optim(par, dat, N, q = 0.5, qty = c('mean', 'quantile'))
gevN.score(par, dat, N, q = 0.5, qty = c('mean', 'quantile'))
gevN.infomat(par, dat, qty = c('mean', 'quantile'), method = c('obs', 'exp'), N, q = 0.5, nobs = length(dat))
gevN.Vfun(par, dat, N, q = 0.5, qty = c('mean', 'quantile'))
gevN.phi(par, dat, N, q = 0.5, qty = c('mean', 'quantile'), V)
gevN.dphi(par, dat, N, q = 0.5, qty = c('mean', 'quantile'), V)Functions
- gevN.ll: log likelihood
- gevN.score: score vector
- gevN.infomat: expected and observed information matrix
- gevN.Vfun: vector implementing conditioning on approximate ancillary statistics for the TEM
- gevN.phi: canonical parameter in the local exponential family approximation
- gevN.dphi: derivative matrix of the canonical parameter in the local exponential family approximation