Likelihood, score function and information matrix, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution parametrized in terms of the return level \(z\), scale and shape.
Arguments
- par
vector of
retlev,scaleandshape- dat
sample vector
- p
tail probability, corresponding to \((1-p)\)th quantile for \(z\)
- method
string indicating whether to use the expected (
'exp') or the observed ('obs'- the default) information matrix.- nobs
number of observations
- V
vector calculated by
gevr.Vfun
Usage
gevr.ll(par, dat, p)
gevr.ll.optim(par, dat, p)
gevr.score(par, dat, p)
gevr.infomat(par, dat, p, method = c('obs', 'exp'), nobs = length(dat))
gevr.Vfun(par, dat, p)
gevr.phi(par, dat, p, V)
gevr.dphi(par, dat, p, V)Functions
gevr.ll: log likelihoodgevr.ll.optim: negative log likelihood parametrized in terms of return levels,log(scale)and shape in order to perform unconstrained optimizationgevr.score: score vectorgevr.infomat: observed information matrixgevr.Vfun: vector implementing conditioning on approximate ancillary statistics for the TEMgevr.phi: canonical parameter in the local exponential family approximationgevr.dphi: derivative matrix of the canonical parameter in the local exponential family approximation