Likelihood, score function and information matrix, approximate ancillary statistics and sample space derivative for the generalized extreme value distribution parametrized in terms of the return level \(z\), scale and shape.
Arguments
- par
vector of
retlev
,scale
andshape
- dat
sample vector
- p
tail probability, corresponding to \((1-p)\)th quantile for \(z\)
- method
string indicating whether to use the expected (
'exp'
) or the observed ('obs'
- the default) information matrix.- nobs
number of observations
- V
vector calculated by
gevr.Vfun
Usage
gevr.ll(par, dat, p)
gevr.ll.optim(par, dat, p)
gevr.score(par, dat, p)
gevr.infomat(par, dat, p, method = c('obs', 'exp'), nobs = length(dat))
gevr.Vfun(par, dat, p)
gevr.phi(par, dat, p, V)
gevr.dphi(par, dat, p, V)
Functions
gevr.ll
: log likelihoodgevr.ll.optim
: negative log likelihood parametrized in terms of return levels,log(scale)
and shape in order to perform unconstrained optimizationgevr.score
: score vectorgevr.infomat
: observed information matrixgevr.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEMgevr.phi
: canonical parameter in the local exponential family approximationgevr.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation