Likelihood, score function and information matrix, bias, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution
Arguments
- par
vector of
scale
andshape
- dat
sample vector
- tol
numerical tolerance for the exponential model
- method
string indicating whether to use the expected (
'exp'
) or the observed ('obs'
- the default) information matrix.- V
vector calculated by
gpd.Vfun
- n
sample size
Usage
gpd.ll(par, dat, tol=1e-5)
gpd.ll.optim(par, dat, tol=1e-5)
gpd.score(par, dat)
gpd.infomat(par, dat, method = c('obs','exp'))
gpd.bias(par, n)
gpd.Fscore(par, dat, method = c('obs','exp'))
gpd.Vfun(par, dat)
gpd.phi(par, dat, V)
gpd.dphi(par, dat, V)
Functions
gpd.ll
: log likelihoodgpd.ll.optim
: negative log likelihood parametrized in terms oflog(scale)
and shape in order to perform unconstrained optimizationgpd.score
: score vectorgpd.infomat
: observed or expected information matrixgpd.bias
: Cox-Snell first order biasgpd.Fscore
: Firth's modified score equationgpd.Vfun
: vector implementing conditioning on approximate ancillary statistics for the TEMgpd.phi
: canonical parameter in the local exponential family approximationgpd.dphi
: derivative matrix of the canonical parameter in the local exponential family approximation
References
Firth, D. (1993). Bias reduction of maximum likelihood estimates, Biometrika, 80(1), 27--38.
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, 209 p.
Cox, D. R. and E. J. Snell (1968). A general definition of residuals, Journal of the Royal Statistical Society: Series B (Methodological), 30, 248--275.
Cordeiro, G. M. and R. Klein (1994). Bias correction in ARMA models, Statistics and Probability Letters, 19(3), 169--176.
Giles, D. E., Feng, H. and R. T. Godwin (2016). Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution, Communications in Statistics - Theory and Methods, 45(8), 2465--2483.