Generalized Pareto maximum likelihood estimates for various quantities of interest
Source:R/mle.R
gpd.mle.Rd
This function calls the fit.gpd
routine on the sample of excesses and returns maximum likelihood
estimates for all quantities of interest, including scale and shape parameters, quantiles and value-at-risk,
expected shortfall and mean and quantiles of maxima of N
threshold exceedances
Usage
gpd.mle(
xdat,
args = c("scale", "shape", "quant", "VaR", "ES", "Nmean", "Nquant"),
m,
N,
p,
q
)
Arguments
- xdat
sample vector of excesses
- args
vector of strings indicating which arguments to return the maximum likelihood values for
- m
number of observations of interest for return levels. Required only for
args
values'VaR'
or'ES'
- N
size of block over which to take maxima. Required only for
args
Nmean
andNquant
.- p
tail probability, equivalent to \(1/m\). Required only for
args
quant
.- q
level of quantile for N-block maxima. Required only for
args
Nquant
.
Examples
xdat <- mev::rgp(n = 30, shape = 0.2)
gpd.mle(xdat = xdat, N = 100, p = 0.01, q = 0.5, m = 100)
#> scale shape quant VaR ES Nmean Nquant
#> 1.3783292 -0.3532796 3.1347373 3.1347373 3.3349106 3.2200786 3.2286869