This function calculates the (modified) profile likelihood based on the \(p^*\) formula. There are two small-sample corrections that use a proxy for \(\ell_{\lambda; \hat{\lambda}}\), which are based on Severini's (1999) empirical covariance and the Fraser and Reid tangent exponential model approximation.
Usage
gpd.pll(
psi,
param = c("scale", "shape", "quant", "retlev", "VaR", "ES", "Nmean", "Nquant"),
mod = "profile",
mle = NULL,
dat,
m = NULL,
N = NULL,
p = NULL,
q = NULL,
correction = TRUE,
thresh = NULL,
plot = TRUE,
...
)Arguments
- psi
parameter vector over which to profile (unidimensional)
- param
string indicating the parameter to profile over
- mod
string indicating the model. See Details.
- mle
maximum likelihood estimate in \((\psi, \xi)\) parametrization if \(\psi \neq \xi\) and \((\sigma, \xi)\) otherwise (optional).
- dat
sample vector of excesses, unless
threshis provided (in which case user provides original data)- m
number of observations of interest for return levels. Required only for
argsvalues'VaR'or'ES'- N
size of block over which to take maxima. Required only for
argsNmeanandNquant.- p
tail probability, equivalent to \(1/m\). Required only for
argsquant.- q
level of quantile for N-block maxima. Required only for
argsNquant.- correction
logical indicating whether to use
spline.corrto smooth the tem approximation.- thresh
numerical threshold above which to fit the generalized Pareto distribution
- plot
logical; should the profile likelihood be displayed? Default to
TRUE- ...
additional arguments such as output from call to
Vfunifmode='tem'.
Value
a list with components
mle: maximum likelihood estimatepsi.max: maximum profile likelihood estimateparam: string indicating the parameter to profile overstd.error: standard error ofpsi.maxpsi: vector of parameter \(\psi\) given inpsipll: values of the profile log likelihood atpsimaxpll: value of maximum profile log likelihoodfamily: a string indicating "gpd"thresh: value of the threshold, by default zero
In addition, if mod includes tem
normal: maximum likelihood estimate and standard error of the interest parameter \(\psi\)r: values of likelihood root corresponding to \(\psi\)q: vector of likelihood modificationsrstar: modified likelihood root vectorrstar.old: uncorrected modified likelihood root vectortem.psimax: maximum of the tangent exponential model likelihood
In addition, if mod includes modif
tem.mle: maximum of tangent exponential modified profile log likelihoodtem.profll: values of the modified profile log likelihood atpsitem.maxpll: value of maximum modified profile log likelihoodempcov.mle: maximum of Severini's empirical covariance modified profile log likelihoodempcov.profll: values of the modified profile log likelihood atpsiempcov.maxpll: value of maximum modified profile log likelihood
Details
The three mod available are profile (the default), tem, the tangent exponential model (TEM) approximation and
modif for the penalized profile likelihood based on \(p^*\) approximation proposed by Severini.
For the latter, the penalization is based on the TEM or an empirical covariance adjustment term.
Examples
if (FALSE) { # \dontrun{
dat <- rgp(n = 100, scale = 2, shape = 0.3)
gpd.pll(psi = seq(-0.5, 1, by=0.01), param = 'shape', dat = dat)
gpd.pll(psi = seq(0.1, 5, by=0.1), param = 'scale', dat = dat)
gpd.pll(psi = seq(20, 35, by=0.1), param = 'quant', dat = dat, p = 0.01)
gpd.pll(psi = seq(20, 80, by=0.1), param = 'ES', dat = dat, m = 100)
gpd.pll(psi = seq(15, 100, by=1), param = 'Nmean', N = 100, dat = dat)
gpd.pll(psi = seq(15, 90, by=1), param = 'Nquant', N = 100, dat = dat, q = 0.5)
} # }