Likelihood, score function and information matrix, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution parametrized in terms of expected shortfall.
The parameter m corresponds to \(\zeta_u\)/(1-\(\alpha\)), where \(\zeta_u\) is the rate of exceedance over the threshold
u and \(\alpha\) is the percentile of the expected shortfall.
Note that the actual parametrization is in terms of excess expected shortfall, meaning expected shortfall minus threshold.
Arguments
- par
- vector of length 2 containing \(e_m\) and \(\xi\), respectively the expected shortfall at probability 1/(1-\(\alpha\)) and the shape parameter. 
- dat
- sample vector 
- m
- number of observations of interest for return levels. See Details 
- tol
- numerical tolerance for the exponential model 
- method
- string indicating whether to use the expected ( - 'exp') or the observed (- 'obs'- the default) information matrix.
- nobs
- number of observations 
- V
- vector calculated by - gpde.Vfun
Details
The observed information matrix was calculated from the Hessian using symbolic calculus in Sage.
Usage
gpde.ll(par, dat, m, tol=1e-5)
gpde.ll.optim(par, dat, m, tol=1e-5)
gpde.score(par, dat, m)
gpde.infomat(par, dat, m, method = c('obs', 'exp'), nobs = length(dat))
gpde.Vfun(par, dat, m)
gpde.phi(par, dat, V, m)
gpde.dphi(par, dat, V, m)Functions
- gpde.ll: log likelihood
- gpde.ll.optim: negative log likelihood parametrized in terms of log expected shortfall and shape in order to perform unconstrained optimization
- gpde.score: score vector
- gpde.infomat: observed information matrix for GPD parametrized in terms of rate of expected shortfall and shape
- gpde.Vfun: vector implementing conditioning on approximate ancillary statistics for the TEM
- gpde.phi: canonical parameter in the local exponential family approximation
- gpde.dphi: derivative matrix of the canonical parameter in the local exponential family approximation