Likelihood, score function and information matrix, approximate ancillary statistics and sample space derivative for the generalized Pareto distribution parametrized in terms of return levels.
Arguments
- par
vector of length 2 containing \(y_m\) and \(\xi\), respectively the \(m\)-year return level and the shape parameter.
- dat
sample vector
- m
number of observations of interest for return levels. See Details
- tol
numerical tolerance for the exponential model
- method
string indicating whether to use the expected (
'exp') or the observed ('obs'- the default) information matrix.- nobs
number of observations
- V
vector calculated by
gpdr.Vfun
Details
The observed information matrix was calculated from the Hessian using symbolic calculus in Sage.
The interpretation for m is as follows: if there are on average \(m_y\) observations per year above the threshold, then \(m=Tm_y\) corresponds to \(T\)-year return level.
Usage
gpdr.ll(par, dat, m, tol=1e-5)
gpdr.ll.optim(par, dat, m, tol=1e-5)
gpdr.score(par, dat, m)
gpdr.infomat(par, dat, m, method = c('obs', 'exp'), nobs = length(dat))
gpdr.Vfun(par, dat, m)
gpdr.phi(par, V, dat, m)
gpdr.dphi(par, V, dat, m)Functions
gpdr.ll: log likelihoodgpdr.ll.optim: negative log likelihood parametrized in terms oflog(scale)and shape in order to perform unconstrained optimizationgpdr.score: score vectorgpdr.infomat: observed information matrix for GPD parametrized in terms of rate of \(m\)-year return level and shapegpdr.Vfun: vector implementing conditioning on approximate ancillary statistics for the TEMgpdr.phi: canonical parameter in the local exponential family approximationgpdr.dphi: derivative matrix of the canonical parameter in the local exponential family approximation