Likelihood, score function and information matrix for the Poisson process likelihood.
Arguments
- par
vector of
loc
,scale
andshape
- dat
sample vector
- u
threshold
- method
string indicating whether to use the expected (
'exp'
) or the observed ('obs'
- the default) information matrix.- np
number of periods of observations. This is a post hoc adjustment for the intensity so that the parameters of the model coincide with those of a generalized extreme value distribution with block size
length(dat)/np
.- nobs
number of observations for the expected information matrix. Default to
length(dat)
ifdat
is provided.
Usage
pp.ll(par, dat)
pp.ll(par, dat, u, np)
pp.score(par, dat)
pp.infomat(par, dat, method = c('obs', 'exp'))
Functions
pp.ll
: log likelihoodpp.score
: score vectorpp.infomat
: observed or expected information matrix
References
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, 209 p.
Wadsworth, J.L. (2016). Exploiting Structure of Maximum Likelihood Estimators for Extreme Value Threshold Selection, Technometrics, 58(1), 116-126, http://dx.doi.org/10.1080/00401706.2014.998345
.
Sharkey, P. and J.A. Tawn (2017). A Poisson process reparameterisation for Bayesian inference for extremes, Extremes, 20(2), 239-263, http://dx.doi.org/10.1007/s10687-016-0280-2
.