Simulation of generalized Huesler-Reiss Pareto vectors via composition sampling
Source:R/rparpcs.R
rparpcshr.Rd
Sample from the generalized Pareto process associated to Huesler-Reiss spectral profiles.
For the Huesler-Reiss Pareto vectors, the matrix Sigma
is utilized to build \(Q\) viz.
$$Q = \Sigma^{-1} - \frac{\Sigma^{-1}\mathbf{1}_d\mathbf{1}_d^\top\Sigma^{-1}}{\mathbf{1}_d^\top\Sigma^{-1}\mathbf{1}_d}.$$
The location vector m
and Sigma
are the parameters of the underlying log-Gaussian process.
Arguments
- n
sample size
- u
vector of marginal location parameters (must be strictly positive)
- alpha
vector of shape parameters (must be strictly positive).
- Sigma
covariance matrix of process, used to define \(Q\). See Details.
- m
location vector of Gaussian distribution.
References
Ho, Z. W. O and C. Dombry (2019), Simple models for multivariate regular variations and the Huesler-Reiss Pareto distribution, Journal of Multivariate Analysis (173), p. 525-550, doi:10.1016/j.jmva.2019.04.008
Examples
D <- 20L
coord <- cbind(runif(D), runif(D))
di <- as.matrix(dist(rbind(c(0, ncol(coord)), coord)))
semivario <- function(d, alpha = 1.5, lambda = 1){(d/lambda)^alpha}
Vmat <- semivario(di)
Sigma <- outer(Vmat[-1, 1], Vmat[1, -1], '+') - Vmat[-1, -1]
m <- Vmat[-1,1]
if (FALSE) {
samp <- rparpcshr(n = 100, u = c(rep(1, 10), rep(2, 10)),
alpha = seq(0.1, 1, length = 20), Sigma = Sigma, m = m)
}