This function implements the exponential regression estimator of the shape parameter for the case of Pareto tails with positive shape index.
Usage
shape.erm(xdat, k, method = c("bdgm", "fh"), bounds = NULL)Arguments
- xdat
vector of observations
- k
vector of integer, the number of largest observations to consider
- method
string; one of
bdgmfor the approach of Beirlant, Dierckx, Goegebeur and Matthys (1999) orfhfor Feuerverger and Hall (1999)- bounds
vector of length 2 giving the bounds for
rho, the second order parameter. Default to \(\rho \in [-5, -0.5]\)
Value
a data frame with columns
knumber of exceedancesshapeestimate of the shape parameterrhoestimate of the second-order regular variation indexscaleestimate of the scale parameter
Details
The second-order parameter is difficult to pin down, and while values within \([-1,0)\) are most logical under Hall model, the model parameters become unidentifiable when \(\rho \to 0\). The default constraint restrict \(-5 <\rho < -0.5\), with the upper bound changed to \(-0.25\) for sample of sizes larger than 5000 observations. Users can set the value of the bounds for \(\rho\) via argument bounds. The optimization is initialized at the Hill estimator.
References
Feuerverger, A. and P. Hall (1999), Estimating a tail exponent by modelling departure from a Pareto distribution, The Annals of Statistics 27(2), 760-781. <doi:10.1214/aos/1018031215>
Beirlant, J., Dierckx, G., Goegebeur, Y. G. Matthys (1999). Tail Index Estimation and an Exponential Regression Model. Extremes, 2, 177–200 (1999). <doi:10.1023/A:1009975020370>