This function implements the exponential regression estimator of the shape parameter for the case of Pareto tails with positive shape index.
Usage
shape.erm(xdat, k, method = c("bdgm", "fh"), bounds = NULL)
Arguments
- xdat
vector of observations
- k
vector of integer, the number of largest observations to consider
- method
string; one of
bdgm
for the approach of Beirlant, Dierckx, Goegebeur and Matthys (1999) orfh
for Feuerverger and Hall (1999)- bounds
vector of length 2 giving the bounds for
rho
, the second order parameter. Default to \(\rho \in [-5, -0.5]\)
Value
a data frame with columns
k
number of exceedancesshape
estimate of the shape parameterrho
estimate of the second-order regular variation indexscale
estimate of the scale parameter
Details
The second-order parameter is difficult to pin down, and while values within \([-1,0)\) are most logical under Hall model, the model parameters become unidentifiable when \(\rho \to 0\). The default constraint restrict \(-5 <\rho < -0.5\), with the upper bound changed to \(-0.25\) for sample of sizes larger than 5000 observations. Users can set the value of the bounds for \(\rho\) via argument bounds
. The optimization is initialized at the Hill estimator.
References
Feuerverger, A. and P. Hall (1999), Estimating a tail exponent by modelling departure from a Pareto distribution, The Annals of Statistics 27(2), 760-781. <doi:10.1214/aos/1018031215>
Beirlant, J., Dierckx, G., Goegebeur, Y. G. Matthys (1999). Tail Index Estimation and an Exponential Regression Model. Extremes, 2, 177–200 (1999). <doi:10.1023/A:1009975020370>