Kernel-based threshold selection of Goegebeur, Beirlant and de Wet (2008)
Source:R/kernel_exponential_thselect.R
thselect.gbw.Rd
Kernel-based threshold selection of Goegebeur, Beirlant and de Wet (2008)
Value
a list with elements
k0
: number of exceedancesshape
: Hill's shape estimaterho
: second-order regular variation parameter estimategof
: goodness-of-fit statistic for the chosen threshold.
References
Goegebeur , Y., Beirlant , J., and de Wet , T. (2008). Linking Pareto-Tail Kernel Goodness-of-fit Statistics with Tail Index at Optimal Threshold and Second Order Estimation. REVSTAT-Statistical Journal, 6(1), 51–69. <doi:10.57805/revstat.v6i1.57>
Examples
xdat <- rgp(n = 1000, scale = 2, shape = 0.5)
(thselect.gbw(xdat, kmax = 500))
#> Threshold selection method: Jackson kernel
#> Goegebeur, Beirlant and de Wet (2008)
#> Second-order regular variation index (gbw estimator): -1.192
#> Number of exceedances: 140
#> Selected threshold: 6.42
#> Shape estimate: 0.724