Probabilistic programming
Content
- Hamiltonian Monte Carlo
- Probabilistic programming
- Stan
Learning objectives
At the end of the chapter, students should be able to
- code models using Stan
Readings
- Betancourt (2017)
- Neal (2011)
- Chi Feng’s MCMC gallery
Complementary readings
Slides
View all slides in new window Download PDF of all slides
Code
- Stochastic volatility model: Stan code 1 and 2 and
cmdstanr
R script - Smartwatch example and
cmdstanr
R script
References
Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv Preprint. https://doi.org/10.48550/arXiv.1701.02434
Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, & X. L. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 113–162). CRC Press. https://doi.org/10.1201/b10905-5