5 References
Albert, Jim. 2009. Bayesian Computation with R.
2nd ed. New York: springer. https://doi.org/10.1007/978-0-387-92298-0.
Alexander, Rohan. 2023. Telling Stories with Data: With Applications
in R. Boca Raton, FL: CRC Press.
Andrieu, Christophe, and Johannes Thoms. 2008. “A Tutorial on
Adaptive MCMC.” Statistics and Computing 18
(4): 343–73. https://doi.org/10.1007/s11222-008-9110-y.
Botev, Zdravko, and Pierre L’Écuyer. 2017. “Simulation from the
Normal Distribution Truncated to an Interval in the Tail.” In
Proceedings of the 10th EAI International Conference on Performance
Evaluation Methodologies and Tools on 10th EAI International Conference
on Performance Evaluation Methodologies and Tools, 23–29. https://doi.org/10.4108/eai.25-10-2016.2266879.
Brodeur, Mathieu, Perrine Ruer, Pierre-Majorique Léger, and Sylvain
Sénécal. 2021. “Smartwatches Are More Distracting Than Mobile
Phones While Driving: Results from an Experimental Study.”
Accident Analysis & Prevention 149: 105846. https://doi.org/10.1016/j.aap.2020.105846.
Coles, Stuart G., and Jonathan A. Tawn. 1996. “A
Bayesian Analysis of Extreme Rainfall Data.”
Journal of the Royal Statistical Society. Series C (Applied
Statistics) 45 (4): 463–78. https://doi.org/10.2307/2986068.
Devroye, L. 1986. Non-Uniform Random Variate
Generation. New York: Springer. http://www.nrbook.com/devroye/.
Dyk, David A van, and Xiao-Li Meng. 2001. “The Art of Data
Augmentation.” Journal of Computational and Graphical
Statistics 10 (1): 1–50. https://doi.org/10.1198/10618600152418584.
Finetti, Bruno de. 1974. Theory of Probability: A Critical
Introductory Treatment. Vol. 1. New York: Wiley.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and
Andrew Gelman. 2019. “Visualization in
Bayesian Workflow.” Journal of the Royal
Statistical Society Series A: Statistics in Society 182 (2):
389–402. https://doi.org/10.1111/rssa.12378.
Gelfand, Alan E., and Adrian F. M. Smith. 1990. “Sampling-Based
Approaches to Calculating Marginal Densities.” Journal of the
American Statistical Association 85 (410): 398–409. https://doi.org/10.1080/01621459.1990.10476213.
Gelman, Andrew. 2006. “Prior Distributions for Variance Parameters
in Hierarchical Models (Comment on Article by Browne and
Draper).” Bayesian Analysis 1 (3): 515–34.
https://doi.org/10.1214/06-BA117A.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. 3rd
ed. New York: Chapman; Hall/CRC. https://doi.org/10.1201/b16018.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian
Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.”
arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2011.01808.
Geman, Stuart, and Donald Geman. 1984. “Stochastic Relaxation,
Gibbs Distributions, and the Bayesian
Restoration of Images.” IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-6 (6): 721–41. https://doi.org/10.1109/TPAMI.1984.4767596.
Geweke, John. 2004. “Getting It Right: Joint Distribution Tests of
Posterior Simulators.” Journal of the American Statistical
Association 99 (467): 799–804. https://doi.org/10.1198/016214504000001132.
Geyer, Charles J. 2011. “Introduction to Markov Chain
Monte Carlo.” In Handbook of
Markov Chain Monte Carlo,
edited by S. Brooks, A. Gelman, G. Jones, and X. L. Meng, 3–48. Boca
Raton: CRC Press. https://doi.org/10.1201/b10905.
Gosset, William Sealy. 1908. “The Probable Error of a
Mean.” Biometrika 6 (1): 1–25. https://doi.org/10.1093/biomet/6.1.1.
Green, Peter J. 2001. “A Primer on Markov Chain
Monte Carlo.” Monographs on
Statistics and Applied Probability 87: 1–62.
Hastings, W. K. 1970. “Monte
Carlo sampling methods using Markov chains and
their applications.” Biometrika 57 (1): 97–109.
https://doi.org/10.1093/biomet/57.1.97.
Hobert, James P. 2011. “The Data Augmentation Algorithm: Theory
and Methodology.” In Handbook of Markov Chain
Monte Carlo, edited by S. Brooks, A.
Gelman, G. Jones, and X. L. Meng, 253–94. Boca Raton: CRC Press. https://doi.org/10.1201/b10905.
Kinderman, Albert J, and John F Monahan. 1977. “Computer
Generation of Random Variables Using the Ratio of Uniform
Deviates.” ACM Transactions on Mathematical Software
(TOMS) 3 (3): 257–60.
Matias, J. Nathan, Kevin Munger, Marianne Aubin Le Quere, and Charles
Ebersole. 2021. “The Upworthy Research
Archive, a Time Series of 32,487 Experiments in
U.S. Media.” Scientific Data 8 (195). https://doi.org/10.1038/s41597-021-00934-7.
McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative Risk
Management: Concepts, Techniques, and Tools. 1st ed. Princeton, NJ:
Princeton University Press.
Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. 1953. “Equation of State Calculations by Fast Computing
Machines.” The Journal of Chemical Physics 21
(6): 1087–92. https://doi.org/10.1063/1.1699114.
Park, Trevor, and George Casella. 2008. “The Bayesian
Lasso.” Journal of the American Statistical
Association 103 (482): 681–86. https://doi.org/10.1198/016214508000000337.
Robert, Christian P., and George Casella. 2004. Monte
Carlo Statistical Methods. New York, NY: Springer. https://doi.org/10.1007/978-1-4757-4145-2.
Roberts, Gareth O., and Jeffrey S. Rosenthal. 2001. “Optimal
Scaling for Various Metropolis–Hastings
Algorithms.” Statistical Science 16 (4): 351–67. https://doi.org/10.1214/ss/1015346320.
Simpson, Daniel, Håvard Rue, Andrea Riebler, Thiago G. Martins, and
Sigrunn H. Sørbye. 2017. “Penalising Model Component Complexity: A
Principled, Practical Approach to Constructing Priors.”
Statistical Science 32 (1): 1–28. https://doi.org/10.1214/16-STS576.
Sørbye, Sigrunn Holbek, and Håvard Rue. 2017. “Penalised
Complexity Priors for Stationary Autoregressive Processes.”
Journal of Time Series Analysis 38 (6): 923–35. https://doi.org/10.1111/jtsa.12242.
Tanner, Martin A., and Wing Hung Wong. 1987. “The Calculation of
Posterior Distributions by Data Augmentation.” Journal of the
American Statistical Association 82 (398): 528–40. https://doi.org/10.1080/01621459.1987.10478458.
Wakefield, J. C., A. E. Gelfand, and A. F. M. Smith. 1991.
“Efficient Generation of Random Variates via the Ratio-of-Uniforms
Method.” Statistics and Computing 1 (2): 129–33. https://doi.org/10.1007/BF01889987.
Watanabe, Sumio. 2010. “Asymptotic Equivalence of
Bayes Cross Validation and Widely Applicable Information
Criterion in Singular Learning Theory.” Journal of Machine
Learning Research 11 (116): 3571–94. http://jmlr.org/papers/v11/watanabe10a.html.