5  References

Albert, Jim. 2009. Bayesian Computation with R. 2nd ed. New York: springer. https://doi.org/10.1007/978-0-387-92298-0.
Alexander, Rohan. 2023. Telling Stories with Data: With Applications in R. Boca Raton, FL: CRC Press.
Andrieu, Christophe, and Johannes Thoms. 2008. “A Tutorial on Adaptive MCMC.” Statistics and Computing 18 (4): 343–73. https://doi.org/10.1007/s11222-008-9110-y.
Botev, Zdravko, and Pierre L’Écuyer. 2017. “Simulation from the Normal Distribution Truncated to an Interval in the Tail.” In Proceedings of the 10th EAI International Conference on Performance Evaluation Methodologies and Tools on 10th EAI International Conference on Performance Evaluation Methodologies and Tools, 23–29. https://doi.org/10.4108/eai.25-10-2016.2266879.
Brodeur, Mathieu, Perrine Ruer, Pierre-Majorique Léger, and Sylvain Sénécal. 2021. “Smartwatches Are More Distracting Than Mobile Phones While Driving: Results from an Experimental Study.” Accident Analysis & Prevention 149: 105846. https://doi.org/10.1016/j.aap.2020.105846.
Coles, Stuart G., and Jonathan A. Tawn. 1996. “A Bayesian Analysis of Extreme Rainfall Data.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 45 (4): 463–78. https://doi.org/10.2307/2986068.
Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer. http://www.nrbook.com/devroye/.
Dyk, David A van, and Xiao-Li Meng. 2001. “The Art of Data Augmentation.” Journal of Computational and Graphical Statistics 10 (1): 1–50. https://doi.org/10.1198/10618600152418584.
Finetti, Bruno de. 1974. Theory of Probability: A Critical Introductory Treatment. Vol. 1. New York: Wiley.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019. Visualization in Bayesian Workflow.” Journal of the Royal Statistical Society Series A: Statistics in Society 182 (2): 389–402. https://doi.org/10.1111/rssa.12378.
Gelfand, Alan E., and Adrian F. M. Smith. 1990. “Sampling-Based Approaches to Calculating Marginal Densities.” Journal of the American Statistical Association 85 (410): 398–409. https://doi.org/10.1080/01621459.1990.10476213.
Gelman, Andrew. 2006. “Prior Distributions for Variance Parameters in Hierarchical Models (Comment on Article by Browne and Draper).” Bayesian Analysis 1 (3): 515–34. https://doi.org/10.1214/06-BA117A.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. 3rd ed. New York: Chapman; Hall/CRC. https://doi.org/10.1201/b16018.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2011.01808.
Geman, Stuart, and Donald Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6 (6): 721–41. https://doi.org/10.1109/TPAMI.1984.4767596.
Geweke, John. 2004. “Getting It Right: Joint Distribution Tests of Posterior Simulators.” Journal of the American Statistical Association 99 (467): 799–804. https://doi.org/10.1198/016214504000001132.
Geyer, Charles J. 2011. “Introduction to Markov Chain Monte Carlo.” In Handbook of Markov Chain Monte Carlo, edited by S. Brooks, A. Gelman, G. Jones, and X. L. Meng, 3–48. Boca Raton: CRC Press. https://doi.org/10.1201/b10905.
Gosset, William Sealy. 1908. “The Probable Error of a Mean.” Biometrika 6 (1): 1–25. https://doi.org/10.1093/biomet/6.1.1.
Green, Peter J. 2001. “A Primer on Markov Chain Monte Carlo.” Monographs on Statistics and Applied Probability 87: 1–62.
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications.” Biometrika 57 (1): 97–109. https://doi.org/10.1093/biomet/57.1.97.
Hobert, James P. 2011. “The Data Augmentation Algorithm: Theory and Methodology.” In Handbook of Markov Chain Monte Carlo, edited by S. Brooks, A. Gelman, G. Jones, and X. L. Meng, 253–94. Boca Raton: CRC Press. https://doi.org/10.1201/b10905.
Kinderman, Albert J, and John F Monahan. 1977. “Computer Generation of Random Variables Using the Ratio of Uniform Deviates.” ACM Transactions on Mathematical Software (TOMS) 3 (3): 257–60.
Matias, J. Nathan, Kevin Munger, Marianne Aubin Le Quere, and Charles Ebersole. 2021. “The Upworthy Research Archive, a Time Series of 32,487 Experiments in U.S. Media.” Scientific Data 8 (195). https://doi.org/10.1038/s41597-021-00934-7.
McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative Risk Management: Concepts, Techniques, and Tools. 1st ed. Princeton, NJ: Princeton University Press.
Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953. Equation of State Calculations by Fast Computing Machines.” The Journal of Chemical Physics 21 (6): 1087–92. https://doi.org/10.1063/1.1699114.
Park, Trevor, and George Casella. 2008. “The Bayesian Lasso.” Journal of the American Statistical Association 103 (482): 681–86. https://doi.org/10.1198/016214508000000337.
Robert, Christian P., and George Casella. 2004. Monte Carlo Statistical Methods. New York, NY: Springer. https://doi.org/10.1007/978-1-4757-4145-2.
Roberts, Gareth O., and Jeffrey S. Rosenthal. 2001. “Optimal Scaling for Various Metropolis–Hastings Algorithms.” Statistical Science 16 (4): 351–67. https://doi.org/10.1214/ss/1015346320.
Simpson, Daniel, Håvard Rue, Andrea Riebler, Thiago G. Martins, and Sigrunn H. Sørbye. 2017. “Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors.” Statistical Science 32 (1): 1–28. https://doi.org/10.1214/16-STS576.
Sørbye, Sigrunn Holbek, and Håvard Rue. 2017. “Penalised Complexity Priors for Stationary Autoregressive Processes.” Journal of Time Series Analysis 38 (6): 923–35. https://doi.org/10.1111/jtsa.12242.
Tanner, Martin A., and Wing Hung Wong. 1987. “The Calculation of Posterior Distributions by Data Augmentation.” Journal of the American Statistical Association 82 (398): 528–40. https://doi.org/10.1080/01621459.1987.10478458.
Wakefield, J. C., A. E. Gelfand, and A. F. M. Smith. 1991. “Efficient Generation of Random Variates via the Ratio-of-Uniforms Method.” Statistics and Computing 1 (2): 129–33. https://doi.org/10.1007/BF01889987.
Watanabe, Sumio. 2010. “Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory.” Journal of Machine Learning Research 11 (116): 3571–94. http://jmlr.org/papers/v11/watanabe10a.html.