12 References
Albert, Jim. 2009. Bayesian Computation with R.
2nd ed. New York: Springer. https://doi.org/10.1007/978-0-387-92298-0.
Alexander, Rohan. 2023. Telling Stories with Data: With Applications
in R. Boca Raton, FL: CRC Press.
Andrieu, Christophe, and Gareth O. Roberts. 2009. “The
Pseudo-Marginal Approach for Efficient Monte
Carlo Computations.” The Annals of
Statistics 37 (2): 697–725. https://doi.org/10.1214/07-AOS574.
Andrieu, Christophe, and Johannes Thoms. 2008. “A Tutorial on
Adaptive MCMC.” Statistics and Computing 18
(4): 343–73. https://doi.org/10.1007/s11222-008-9110-y.
Beaumont, Mark A. 2003. “Estimation of Population Growth or
Decline in Genetically Monitored Populations.” Genetics
164 (3): 1139–60. https://doi.org/10.1093/genetics/164.3.1139.
Bishop, Christopher M. 2006. Pattern Recognition and Machine
Learning. New York, NY: Springer. https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/.
Bolin, David, Alexandre B. Simas, and Zhen Xiong. 2023.
“Wasserstein Complexity Penalization Priors: A New
Class of Penalizing Complexity Priors.” arXiv e-Prints,
arXiv:2312.04481. https://doi.org/10.48550/arXiv.2312.04481.
Botev, Zdravko, and Pierre L’Écuyer. 2017. “Simulation from the
Normal Distribution Truncated to an Interval in the Tail.” In
Proceedings of the 10th EAI International Conference on Performance
Evaluation Methodologies and Tools on 10th EAI International Conference
on Performance Evaluation Methodologies and Tools, 23–29. https://doi.org/10.4108/eai.25-10-2016.2266879.
Box, G. E. P., and D. R. Cox. 1964. “An Analysis of
Transformations.” Journal of the Royal Statistical Society:
Series B (Methodological) 26 (2): 211–43. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.
Boyd, Stephen, and Lieven Vandenberghe. 2004. Convex
Optimization. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511804441.
Brodeur, Mathieu, Perrine Ruer, Pierre-Majorique Léger, and Sylvain
Sénécal. 2021. “Smartwatches Are More Distracting Than Mobile
Phones While Driving: Results from an Experimental Study.”
Accident Analysis & Prevention 149: 105846. https://doi.org/10.1016/j.aap.2020.105846.
Carpenter, Bob, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,
and Allen Riddell. 2017. “Stan: A Probabilistic
Programming Language.” Journal of Statistical Software
76 (1): 1–32. https://doi.org/10.18637/jss.v076.i01.
Carvalho, Carlos M., Nicholas G. Polson, and James G. Scott. 2010.
“The Horseshoe Estimator for Sparse Signals.”
Biometrika 97 (2): 465–80. https://doi.org/10.1093/biomet/asq017.
Coles, Stuart G., and Jonathan A. Tawn. 1996. “A
Bayesian Analysis of Extreme Rainfall Data.”
Journal of the Royal Statistical Society. Series C (Applied
Statistics) 45 (4): 463–78. https://doi.org/10.2307/2986068.
Cseke, Botond, and Tom Heskes. 2011. “Approximate Marginals in
Latent Gaussian Models.” Journal of Machine
Learning Research 12 (13): 417–54. http://jmlr.org/papers/v12/cseke11a.html.
Davison, A. C. 2003. Statistical Models. Cambridge, UK:
Cambridge University Press.
Dehaene, Guillaume, and Simon Barthelmé. 2018. “Expectation
Propagation in the Large Data Limit.” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 80 (1):
199–217. https://doi.org/10.1111/rssb.12241.
Devroye, L. 1986. Non-Uniform Random Variate Generation. New
York: Springer. http://www.nrbook.com/devroye/.
Duke, Kristen E., and On Amir. 2023. “The Importance of Selling
Formats: When Integrating Purchase and Quantity Decisions Increases
Sales.” Marketing Science 42 (1): 87–109. https://doi.org/10.1287/mksc.2022.1364.
Dyk, David A van, and Xiao-Li Meng. 2001. “The Art of Data
Augmentation.” Journal of Computational and Graphical
Statistics 10 (1): 1–50. https://doi.org/10.1198/10618600152418584.
Eaton, Morris L. 2007. Multivariate Statistics: A Vector Space
Approach. Institute for Mathematical Statistics. https://doi.org/10.1214/lnms/1196285102.
Finetti, Bruno de. 1974. Theory of Probability: A Critical
Introductory Treatment. Vol. 1. New York: Wiley.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and
Andrew Gelman. 2019. “Visualization in
Bayesian Workflow.” Journal of the Royal
Statistical Society Series A: Statistics in Society 182 (2):
389–402. https://doi.org/10.1111/rssa.12378.
Gelfand, Alan E., and Adrian F. M. Smith. 1990. “Sampling-Based
Approaches to Calculating Marginal Densities.” Journal of the
American Statistical Association 85 (410): 398–409. https://doi.org/10.1080/01621459.1990.10476213.
Gelman, Andrew. 2006. “Prior Distributions for Variance Parameters
in Hierarchical Models (Comment on Article by Browne and
Draper).” Bayesian Analysis 1 (3): 515–34.
https://doi.org/10.1214/06-ba117a.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. 3rd
ed. New York: Chapman; Hall/CRC. https://doi.org/10.1201/b16018.
Gelman, Andrew, and Donald B. Rubin. 1992. “Inference from
Iterative Simulation Using Multiple Sequences.” Statistical
Science 7 (4): 457–72. https://doi.org/10.1214/ss/1177011136.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian
Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.”
arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2011.01808.
Geman, Stuart, and Donald Geman. 1984. “Stochastic Relaxation,
Gibbs Distributions, and the Bayesian
Restoration of Images.” IEEE Transactions on Pattern Analysis
and Machine Intelligence Pami-6 (6): 721–41. https://doi.org/10.1109/tpami.1984.4767596.
George, Edward I., and Robert E. McCulloch. 1993. “Variable
Selection via Gibbs Sampling.” Journal of the
American Statistical Association 88 (423): 881–89. https://doi.org/10.1080/01621459.1993.10476353.
Geweke, John. 1992. “Evaluating the Accuracy of Sampling-Based
Approaches to the Calculation of Posterior Moments.” In
Bayesian Statistics 4: Proceedings of the Fourth Valencia
International Meeting, Dedicated to the Memory of Morris h. DeGroot,
1931–1989. Oxford University Press. https://doi.org/10.1093/oso/9780198522669.003.0010.
———. 2004. “Getting It Right: Joint Distribution Tests of
Posterior Simulators.” Journal of the American Statistical
Association 99 (467): 799–804. https://doi.org/10.1198/016214504000001132.
Geyer, Charles J. 2011. “Introduction to Markov Chain
Monte Carlo.” In Handbook of
Markov Chain Monte Carlo,
edited by S. Brooks, A. Gelman, G. Jones, and X. L. Meng, 3–48. Boca
Raton: CRC Press. https://doi.org/10.1201/b10905-3.
Gosset, William Sealy. 1908. “The Probable Error of a
Mean.” Biometrika 6 (1): 1–25. https://doi.org/10.1093/biomet/6.1.1.
Gradshteyn, I. S., and I. M. Ryzhik. 2014. Table of Integrals,
Series, and Products. 8th ed. Academic Press. https://doi.org/10.1016/c2010-0-64839-5.
Green, Peter J. 1995. “Reversible Jump Markov Chain
Monte Carlo Computation and
Bayesian Model Determination.” Biometrika
82 (4): 711–32. https://doi.org/10.1093/biomet/82.4.711.
———. 2001. “A Primer on Markov Chain
Monte Carlo.” Monographs on
Statistics and Applied Probability 87: 1–62.
Hastings, W. K. 1970. “Monte
Carlo sampling methods using Markov chains and
their applications.” Biometrika 57 (1): 97–109.
https://doi.org/10.1093/biomet/57.1.97.
Held, Leonhard, and Daniel Sabanés Bové. 2020. Likelihood and
Bayesian Inference: With Applications in Biology and
Medicine. 2nd ed. Heidelberg: Springer Berlin. https://doi.org/10.1007/978-3-662-60792-3.
Hobert, James. 2011. “The Data Augmentation Algorithm: Theory and
Methodology.” In Handbook of Markov Chain
Monte Carlo, edited by S. Brooks, A.
Gelman, G. Jones, and X. L. Meng, 253–93. Boca Raton: CRC Press. https://doi.org/10.1201/b10905-11.
Hoffman, Matthew D., David M. Blei, Chong Wang, and John Paisley. 2013.
“Stochastic Variational Inference.” Journal of Machine
Learning Research 14 (40): 1303–47. http://jmlr.org/papers/v14/hoffman13a.html.
Holmes, C. C., D. G. T. Denison, and B. K. Mallick. 2002.
“Accounting for Model Uncertainty in Seemingly Unrelated
Regressions.” Journal of Computational and Graphical
Statistics 11 (3): 533–51. http://www.jstor.org/stable/1391112.
Jasra, A., C. C. Holmes, and D. A. Stephens. 2005.
“Markov Chain Monte Carlo
Methods and the Label Switching Problem in Bayesian Mixture
Modeling.” Statistical Science 20 (1): 50–67. https://doi.org/10.1214/088342305000000016.
Jegerlehner, Sabrina, Franziska Suter-Riniker, Philipp Jent, Pascal
Bittel, and Michael Nagler. 2021. “Diagnostic Accuracy of a
SARS-CoV-2 Rapid Antigen Test in Real-Life Clinical
Settings.” International Journal of Infectious Diseases
109: 118–22. https://doi.org/10.1016/j.ijid.2021.07.010.
Kinderman, Albert J, and John F Monahan. 1977. “Computer
Generation of Random Variables Using the Ratio of Uniform
Deviates.” ACM Transactions on Mathematical Software
(TOMS) 3 (3): 257–60.
Kitagawa, Genshiro. 1987. “Non-Gaussian State—Space
Modeling of Nonstationary Time Series.” Journal of the
American Statistical Association 82 (400): 1032–41. https://doi.org/10.1080/01621459.1987.10478534.
Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David
M. Blei. 2017. “Automatic Differentiation Variational
Inference.” Journal of Machine Learning Research 18
(14): 1–45. http://jmlr.org/papers/v18/16-107.html.
Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009.
“Generating Random Correlation Matrices Based on Vines and
Extended Onion Method.” Journal of Multivariate Analysis
100 (9): 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008.
Lin, Jason D, Nicole You Jeung Kim, Esther Uduehi, and Anat Keinan.
2024. “Culture for Sale: Unpacking Consumer Perceptions of
Cultural Appropriation.” Journal of Consumer Research.
https://doi.org/10.1093/jcr/ucad076.
Liu, Jun S. 1994. “Siegel’s Formula via
Stein’s Identities.” Statistics &
Probability Letters 21 (3): 247–51. https://doi.org/10.1016/0167-7152(94)90121-X.
Marshall, Albert W., and Ingram Olkin. 1985. “A Family of
Bivariate Distributions Generated by the Bivariate
Bernoulli Distribution.” Journal of the American
Statistical Association 80 (390): 332–38. https://doi.org/10.1080/01621459.1985.10478116.
Martins, Eduardo S., and Jery R. Stedinger. 2000. “Generalized
Maximum-Likelihood Generalized Extreme-Value Quantile Estimators for
Hydrologic Data.” Water Resources Research 36 (3):
737–44. https://doi.org/10.1029/1999WR900330.
Matias, J. Nathan, Kevin Munger, Marianne Aubin Le Quere, and Charles
Ebersole. 2021. “The Upworthy Research
Archive, a Time Series of 32,487 Experiments in
U.S. Media.” Scientific Data 8 (195). https://doi.org/10.1038/s41597-021-00934-7.
McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative Risk
Management: Concepts, Techniques, and Tools. 1st ed. Princeton, NJ:
Princeton University Press.
Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. 1953. “Equation of State
Calculations by Fast Computing Machines.” The Journal of
Chemical Physics 21 (6): 1087–92. https://doi.org/10.1063/1.1699114.
Minka, Thomas P. 2001. “A Family of Algorithms for Approximate
Bayesian Inference.” PhD thesis, Massachusetts
Institute of Technology. http://hdl.handle.net/1721.1/86583.
Mitchell, T. J., and J. J. Beauchamp. 1988. “Bayesian Variable
Selection in Linear Regression.” Journal of the American
Statistical Association 83 (404): 1023–32. https://doi.org/10.1080/01621459.1988.10478694.
Nadarajah, Saralees. 2008. “Marshall and
Olkin’s Distributions.” Acta Applicandae
Mathematicae 103 (1): 87–100. https://doi.org/10.1007/s10440-008-9221-7.
Neal, Radford M. 2011. “MCMC Using
Hamiltonian Dynamics.” In Handbook of
Markov Chain Monte Carlo,
edited by S. Brooks, A. Gelman, G. Jones, and X. L. Meng, 113–62. Boca
Raton: CRC Press. https://doi.org/10.1201/b10905-5.
Northrop, Paul J. 2024.
rust
: Ratio-of-Uniforms
Simulation with Transformation. https://doi.org/10.32614/CRAN.package.rust.
Northrop, Paul J., and Nicolas Attalides. 2016. “Posterior
Propriety in Bayesian Extreme Value Analyses Using
Reference Priors.” Statistica Sinica 26 (2): 721–43. https://doi.org/10.5705/ss.2014.034.
Nychka, Douglas, Soutir Bandyopadhyay, Dorit Hammerling, Finn Lindgren,
and Stephan Sain. 2015. “A Multiresolution Gaussian
Process Model for the Analysis of Large Spatial Datasets.”
Journal of Computational and Graphical Statistics 24 (2):
579–99.
Ormerod, J. T., and M. P. Wand. 2010. “Explaining Variational
Approximations.” The American Statistician 64 (2):
140–53. https://doi.org/10.1198/tast.2010.09058.
Park, Trevor, and George Casella. 2008. “The Bayesian
Lasso.” Journal of the American Statistical
Association 103 (482): 681–86. https://doi.org/10.1198/016214508000000337.
Peskun, P. H. 1973. “Optimum Monte-Carlo
Sampling Using Markov Chains.” Biometrika
60 (3): 607–12. https://doi.org/10.1093/biomet/60.3.607.
Piironen, Juho, and Aki Vehtari. 2017. “Sparsity Information and
Regularization in the Horseshoe and Other Shrinkage Priors.”
Electronic Journal of Statistics 11 (2): 5018–51. https://doi.org/10.1214/17-ejs1337si.
Plummer, Martyn, Nicky Best, Kate Cowles, and Karen Vines. 2006.
“CODA: Convergence Diagnosis and Output Analysis for
MCMC.” R News 6 (1): 7–11. https://doi.org/10.32614/CRAN.package.coda.
Raftery, Adrian E. 1995. “Bayesian Model Selection in Social
Research.” Sociological Methodology 25: 111–63. https://doi.org/10.2307/271063.
Ranganath, Rajesh, Sean Gerrish, and David Blei. 2014.
“Black Box Variational Inference.” In
Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, edited by Samuel Kaski and
Jukka Corander, 33:814–22. Proceedings of Machine Learning Research.
Reykjavik, Iceland: PMLR. https://proceedings.mlr.press/v33/ranganath14.html.
Robert, Christian P., and George Casella. 2004. Monte
Carlo Statistical Methods. 2nd ed. New York, NY:
Springer. https://doi.org/10.1007/978-1-4757-4145-2.
Roberts, Gareth O., and Jeffrey S. Rosenthal. 2001. “Optimal
Scaling for Various Metropolis–Hastings
Algorithms.” Statistical Science 16 (4): 351–67. https://doi.org/10.1214/ss/1015346320.
Rue, Håvard, Sara Martino, and Nicolas Chopin. 2009. “Approximate
Bayesian Inference for Latent Gaussian Models by Using
Integrated Nested Laplace Approximations.”
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 71 (2): 319–92. https://doi.org/10.1111/j.1467-9868.2008.00700.x.
Rue, H., and L. Held. 2005. Gaussian
Markov Random Fields: Theory and Applications. Chapman
& Hall/CRC Monographs on Statistics & Applied Probability. Boca
Raton: CRC Press.
Säilynoja, Teemu, Paul-Christian Bürkner, and Aki Vehtari. 2022.
“Graphical Test for Discrete Uniformity and Its Applications in
Goodness-of-Fit Evaluation and Multiple Sample Comparison.”
Statistics and Computing 32 (2): 32. https://doi.org/10.1007/s11222-022-10090-6.
Sherlock, Chris. 2013. “Optimal Scaling of the Random Walk
Metropolis: General Criteria for the 0.234 Acceptance
Rule.” Journal of Applied Probability 50 (1): 1–15. https://doi.org/10.1239/jap/1363784420.
Simpson, Daniel, Håvard Rue, Andrea Riebler, Thiago G. Martins, and
Sigrunn H. Sørbye. 2017. “Penalising Model Component Complexity: A
Principled, Practical Approach to Constructing Priors.”
Statistical Science 32 (1): 1–28. https://doi.org/10.1214/16-sts576.
Smith, Richard L. 1985. “Maximum Likelihood Estimation in a Class
of Nonregular Cases.” Biometrika 72 (1): 67–90. https://doi.org/10.1093/biomet/72.1.67.
Sørbye, Sigrunn Holbek, and Håvard Rue. 2017. “Penalised
Complexity Priors for Stationary Autoregressive Processes.”
Journal of Time Series Analysis 38 (6): 923–35. https://doi.org/10.1111/jtsa.12242.
Spiegelhalter, David J., Nicola G. Best, Bradley P. Carlin, and Angelika
Linde. 2014. “The Deviance Information Criterion: 12 Years
On.” Journal of the Royal Statistical Society Series B:
Statistical Methodology 76 (3): 485–93. https://doi.org/10.1111/rssb.12062.
Spiegelhalter, David J., Nicola G. Best, Bradley P. Carlin, and Angelika
Van Der Linde. 2002. “Bayesian Measures of Model Complexity and
Fit.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 64 (4): 583–639. https://doi.org/10.1111/1467-9868.00353.
Stephens, Matthew. 2002. “Dealing with Label Switching in Mixture
Models.” Journal of the Royal Statistical Society Series B:
Statistical Methodology 62 (4): 795–809. https://doi.org/10.1111/1467-9868.00265.
Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew
Gelman. 2020. “Validating Bayesian Inference
Algorithms with Simulation-Based Calibration.” https://doi.org/10.48550/arXiv.1804.06788.
Tanner, Martin A., and Wing Hung Wong. 1987. “The Calculation of
Posterior Distributions by Data Augmentation.” Journal of the
American Statistical Association 82 (398): 528–40. https://doi.org/10.1080/01621459.1987.10478458.
Tierney, Luke, and Joseph B. Kadane. 1986. “Accurate
Approximations for Posterior Moments and Marginal Densities.”
Journal of the American Statistical Association 81 (393):
82–86. https://doi.org/10.1080/01621459.1986.10478240.
van Niekerk, Janet, and Håavard Rue. 2024. “Low-Rank Variational
Bayes Correction to the Laplace
Method.” Journal of Machine Learning Research 25 (62):
1–25. http://jmlr.org/papers/v25/21-1405.html.
Villani, Mattias. 2023. “Bayesian Learning: A Gentle
Introduction.” https://mattiasvillani.com/BayesianLearningBook/.
Wakefield, J. C., A. E. Gelfand, and A. F. M. Smith. 1991.
“Efficient Generation of Random Variates via the Ratio-of-Uniforms
Method.” Statistics and Computing 1 (2): 129–33. https://doi.org/10.1007/BF01889987.
Watanabe, Sumio. 2010. “Asymptotic Equivalence of
Bayes Cross Validation and Widely Applicable Information
Criterion in Singular Learning Theory.” Journal of Machine
Learning Research 11 (116): 3571–94. http://jmlr.org/papers/v11/watanabe10a.html.
Wood, Simon N. 2019. “Simplified Integrated Nested
Laplace Approximation.” Biometrika 107 (1):
223–30. https://doi.org/10.1093/biomet/asz044.
Zellner, Arnold. 1971. An Introduction to Bayesian
Inference in Econometrics. Wiley.
———. 1986. “On Assessing Prior Distributions and
Bayesian Regression Analysis with g-Prior Distributions.” In
Bayesian Inference and Decision Techniques: Essays in
Honor of Bruno de Finetti, 233–43.
North-Holland/Elsevier.